
Cryptography and 
Network Security

Eighth Edition

 by William Stallings 

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Chapter 9
Public Key Cryptography and RSA

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



• The concept of public-key cryptography evolved from 
an attempt to attack two of the most difficult 
problems associated with symmetric encryption:

• Whitfield Diffie and Martin Hellman from Stanford 
University achieved a breakthrough in 1976 by coming 
up with a method that addressed both problems and 
was radically different from all previous approaches to 
cryptography

Principles of Public-Key 
Cryptosystems

• How to have secure communications in general without having to 
trust a Key Distribution Center (KDC) with your key

Key distribution

• How to verify that a message comes intact from the claimed sender

Digital signatures

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Misconceptions Concerning 
Public-Key Encryption

• Public-key encryption is more secure from 
cryptanalysis than symmetric encryption

• Public-key encryption is a general-purpose 
technique that has made symmetric encryption 
obsolete

• There is a feeling that key distribution is trivial 
when using public-key encryption, compared to 
the cumbersome handshaking involved with key 
distribution centers for symmetric encryption

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.









Public-Key Cryptosystems

• A public-key encryption scheme has six ingredients:

Plaintext

The 
readable 
message 
or data 

that is fed 
into the 

algorithm 
as input

Encryption 
algorithm

Performs 
various 

transforma-
tions on the 

plaintext

Public key

Used for 
encryption 

or 
decryption

Private key

Used for 
encryption 

or 
decryption

Ciphertext

The 
scrambled 
message 
produced 
as output

Decryption 
algorithm

Accepts the 
ciphertext

and the 
matching 
key and 

produces the 
original 

plaintext

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Plaintext

input

Bobs's

public key

ring

Transmitted

ciphertext

Plaintext

output
Encryption algorithm

(e.g., RSA)

Decryption algorithm

Joy

Mike

Mike Bob

Ted

Alice

Alice's public

key

Alice 's private

key

(a) Encryption with public key

Plaintext

input

Transmitted

ciphertext

Plaintext

output
Encryption algorithm

(e.g., RSA)

Decryption algorithm

Bob's private

key

Bob

Bob's public

key

Alice's

public key

ring

Joy
Ted

(b) Encryption with private key

X

X

PUa

PUb

PRa

PRb

Y = E[PUa, X]

Y = E[PRb, X]

X =

D[PRa, Y]

X =

D[PUb, Y]

Figure 9.1  Public-Key Cryptography

Alice

Bob Alice

Plaintext

input

Bobs's

public key

ring

Transmitted

ciphertext

Plaintext

output
Encryption algorithm

(e.g., RSA)

Decryption algorithm

Joy

Mike

Mike Bob

Ted

Alice

Alice's public

key

Alice 's private

key

(a) Encryption with public key

Plaintext

input

Transmitted

ciphertext

Plaintext

output
Encryption algorithm

(e.g., RSA)

Decryption algorithm

Bob's private

key

Bob

Bob's public

key

Alice's

public key

ring

Joy
Ted

(b) Encryption with private key

X

X

PUa

PUb

PRa

PRb

Y = E[PUa, X]

Y = E[PRb, X]

X =

D[PRa, Y]

X =

D[PUb, Y]

Figure 9.1  Public-Key Cryptography

Alice

Bob Alice



© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Plaintext

input

Bobs's

public key

ring

Transmitted

ciphertext

Plaintext

output
Encryption algorithm

(e.g., RSA)

Decryption algorithm

Joy

Mike

Mike Bob

Ted

Alice

Alice's public

key

Alice 's private

key

(a) Encryption with public key

Plaintext

input

Transmitted

ciphertext

Plaintext

output
Encryption algorithm

(e.g., RSA)

Decryption algorithm

Bob's private

key

Bob

Bob's public

key

Alice's

public key

ring

Joy
Ted

(b) Encryption with private key

X

X

PUa

PUb

PRa

PRb

Y = E[PUa, X]

Y = E[PRb, X]

X =

D[PRa, Y]

X =

D[PUb, Y]

Figure 9.1  Public-Key Cryptography

Alice

Bob Alice



© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Conventional Encryption Public-Key Encryption

Needed to Work:
 
 1. The same algorithm with the same key is used for 

encryption and decryption.

 2. The sender and receiver must share the algorithm and 
the key.

Needed for Security:

 1. The key must be kept secret.

 2. It must be impossible or at least impractical to decipher a 
message if the key is kept secret.

 3. Knowledge of the algorithm plus samples of ciphertext 
must be insufficient to determine the key.

Needed to Work:

 1. One algorithm is used for encryption and a related 
algorithm for decryption with a pair of keys, one for 
encryption and one for decryption.

 2. The sender and receiver must each have one of the 
matched pair of keys (not the same one).

Needed for Security:

 1. One of the two keys must be kept secret.

 2. It must be impossible or at least impractical to decipher a 
message if one of the keys is kept secret.

 
 3. Knowledge of the algorithm plus one of the keys plus 

samples of ciphertext must be insufficient to determine 
the other key.

Table 9.2   CONVENTIONAL AND PUBLIC-KEY ENCRYPTION 



Public-Key Cryptosystem:  Confidentiality

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Message

Source

Cryptanalyst

Key Pair

Source

Destination
X

^
PRb

PUb

Figure 9.2   Public-Key Cryptosystem: Secrecy

Encryption

Algorithm

Decryption

Algorithm

PRb

^
X

Source A Destination B

Y = E[PUb, X]
X =

D[PRb, Y]



Public-Key Cryptosystem:  Authentication

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Public-Key Cryptosystem:  
Authentication and Secrecy

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Applications for Public-Key 
Cryptosystems

• Public-key cryptosystems can be classified into 
three categories:

• Some algorithms are suitable for all three 
applications, whereas others can be used only for 
one or two

•The sender encrypts a message 
with the recipient’s public keyEncryption/decryption

•The sender “signs” a message 
with its private keyDigital signature

•Two sides cooperate to 
exchange a session keyKey exchange

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Applications for Public-Key Cryptosystems

Table 9.3  Applications for Public-Key Cryptosystems 

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Algorithm Encryption/Decryption Digital Signature Key Exchange 

RSA Yes Yes Yes 

Elliptic Curve Yes Yes Yes 

Diffie-Hellman No No Yes 

DSS No Yes No 

 



Public-Key Requirements

• Conditions that these algorithms must fulfill:
• It is computationally easy for a party B to generate a pair 

(public-key PUb, private key PRb)
• It is computationally easy for a sender A, knowing the 

public key and the message to be encrypted, to generate 
the corresponding ciphertext 

• It is computationally easy for the receiver B to decrypt 
the resulting ciphertext using the private key to recover 
the original message

• It is computationally infeasible for an adversary, knowing 
the public key, to determine the private key

• It is computationally infeasible for an adversary, knowing 
the public key and a ciphertext, to recover the original 
message

• The two keys can be applied in either order

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Public-Key Requirements

• Need a trap-door one-way function
• A one-way function is one that maps a domain into a range 

such that every function value has a unique inverse, with the 
condition that the calculation of the function is easy, whereas 
the calculation of the inverse is infeasible
• Y = f(X) easy  

• X = f–1(Y) infeasible

• A trap-door one-way function is a family of invertible 
functions fk, such that
• Y = fk(X) easy, if k and X are known

• X = fk
–1(Y) easy, if k and Y are known

• X = fk
–1(Y) infeasible, if Y known but k not known

• A practical public-key scheme depends on a suitable trap-
door one-way function

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Public-Key Cryptanalysis

• A public-key encryption scheme is vulnerable to a brute-force attack
• Countermeasure:  use large keys

• Key size must be small enough for practical encryption and decryption

• Key sizes that have been proposed result in encryption/decryption 
speeds that are too slow for general-purpose use

• Public-key encryption is currently confined to key management and 
signature applications

• Another form of attack is to find some way to compute the private 
key given the public key
• To date it has not been mathematically proven that this form of attack is 

infeasible for a particular public-key algorithm

• Finally, there is a probable-message attack
• This attack can be thwarted by appending some random                    bits 

to simple messages

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Rivest-Shamir-Adleman 
(RSA) Algorithm

• Developed in 1977 at MIT by Ron Rivest, Adi 
Shamir & Len Adleman

• Most widely used general-purpose approach to 
public-key encryption

• Is a cipher in which the plaintext and ciphertext 
are integers between 0 and n – 1 for some n

• A typical size for n is 1024 bits, or 309 decimal digits

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



RSA Algorithm

• Select prime number 𝐩, 𝒒 such that 𝐩 ≠ 𝒒

• Calculate 𝒏 = 𝒑 × 𝒒

• Calculate 𝝋 𝒏 = 𝒑 − 𝟏 (𝒒 − 𝟏)

• Select integer ‘𝒆’ such that 𝐆𝐂𝐃 𝝋 𝒏 , 𝒆 = 𝟏 and               
1 < 𝒆 < 𝝋 𝒏

• Calculate ‘𝒅’ such that 𝒆 × 𝒅 ≡ 𝟏 𝐦𝐨𝐝 𝝋 𝒏

• Public key 𝑷𝑼 = 𝒆, 𝒏

• Private key 𝑷𝑹 = 𝒅, 𝒏
© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



RSA Algorithm

• Plaintext is encrypted in blocks M with each block
having a binary value less than some number n

• Encryption by Bob using Alice’s Public key

• Plaintext: M < n
• Cipher text: C = Me mod n

• Decryption by Alice using Alice’s Private key
• Cipher text: C
• Plaintext: M = Cd mod n 

= (Me)d mod n 
= Med mod n 

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Algorithm Requirements

•  For this algorithm to be satisfactory for public-
key encryption, the following requirements 
must be met:

  1.  It is possible to find values of e, d, n         
     such that Med mod n = M for all M < n 

  2.  It is relatively easy to calculate Me mod        
     n and Cd mod n for all values of M < n 

  3.  It is infeasible to determine d given e          
     and n

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 

 

Key Generation by Alice 

 

 Select p, q p and q both prime, p ≠ q 

  

 Calculate n = p ´ q 

  

 Calculate f(n) = (p – 1)(q – 1) 

 

 Select integer e gcd(f(n), e) = 1;  1 < e < f(n) 

 

 Calculate d d º e-1 (mod f(n)) 
 

 Public key PU = {e, n} 

 

 Private key PR = {d, n} 

 

 

 

Encryption by Bob with Alice's Public Key 

 

 Plaintext: M < n 

 

 Ciphertext: C = Me mod n 

 

 

 

Decryption by Alice with Alice's Private Key 

 

 Ciphertext: C 

 

 Plaintext: M = Cd mod n 

 

 

 

 

Figure 9.5  The RSA Algorithm 
 



Example of RSA Algorithm

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Perform Encryption for plaintext  88 using the RSA 
algorithm with the values p = 11, q = 17, and e =7.

• We have prime number 𝐩 = 𝟏𝟏, 𝒒 = 𝟏𝟕 such that 𝐩 ≠ 𝒒

• Calculate 𝒏 = 𝒑 × 𝒒 = 𝟏𝟏 × 𝟏𝟕 = 𝟏𝟖𝟕

• Calculate 𝝋 𝒏 = 𝒑 − 𝟏 𝒒 − 𝟏 = 𝟏𝟏 − 𝟏 𝟏𝟕 − 𝟏 = 𝟏𝟔𝟎

• Given integer ‘𝒆 = 𝟕’ such that 𝐆𝐂𝐃 𝟏𝟔𝟎, 𝟕 = 𝟏
and               1 < 𝟕 < 𝟒𝟎



Example of RSA Algorithm

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Perform Encryption for plaintext  88 using the RSA 
algorithm with the values p = 11, q = 17, and e =7.

• Calculate ‘𝒅’ such that 𝒆 × 𝒅 ≡ 𝟏 𝐦𝐨𝐝 𝝋 𝒏
• 𝟕 × 𝒅 ≡ 𝟏 𝐦𝐨𝐝 𝟏𝟔𝟎 (use extended Euclidean 

algorithm to find 𝒅)

• 𝒅 = 23

• Public key 𝑷𝑼 = 𝒆, 𝒏 = {𝟕, 𝟏𝟖𝟕}

• Private key 𝑷𝑹 = 𝒅, 𝒏 = {𝟐𝟑, 𝟏𝟖𝟕}



Example of RSA Algorithm

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Perform Encryption for plaintext  88 using the RSA 
algorithm with the values p = 11, q = 17, and e =7.

• 𝑴 = 𝟖𝟖 < 𝟏𝟖𝟕

• 𝑪 = 𝑴𝒆 𝐦𝐨𝐝 𝒏 = 𝟖𝟖𝟕 𝐦𝐨𝐝 𝟏𝟖𝟕 = 𝟏𝟏



Example of RSA Algorithm

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Encryption

plaintext

88

plaintext

88

ciphertext

11
88  mod 187 = 11

PU = 7, 187

Decryption

Figure 9.6  Example of RSA Algorithm

7
11    mod 187 = 88

PR = 23, 187

23



RSA Real World Example
• p

121310724392112718973236715316124404284724276337014109256345493123019
643730420856193241973653224168665410170573613652141717117137979742993
34871062829803541

• q
120275242554787488859562207937345121287333878036820754336538999839551
798509887978998691469008091316111533468170508320960221601463663463918
12470987105415233

• n
145906768007583323230186939349070635292401872375357164399581871019873
438799005358938369571402670149802121818086292467422828157022922076746
906543401224889672472407926969987100581290103199317858753663710862357
656510507883714297115637342788911463535102712032765166518411726859837
988672111837205085526346618740053



RSA Real World Example
• ϕ(n)

14590676800758332323018693934907063529240187237535716439958187101987343879900
53589383695714026701498021218180862924674228281570229220767469065434012248896
48313811232279966317301397777852365301547848273478871297222058587457152891606
45926971811926897116355507080264399952954964411681194751651393818429668352128
0

• e   65537 (a most common choice)

• d
89489425009274444368228545921773093919669586065884257445497854456487674839
62981839093494197326287961679797060891728367987549933157416111385408881327
54881105882471930775825272784379065040156806234235500672400424666656542323
83502922215493623289472138866445818789127946123407807725702626644091036502
372545139713



© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Plaintext P

Decimal string

Sender

Figure 9.7  RSA Processing of Multiple Blocks

Receiver

(a) General approach (b) Example

Blocks of numbers

Transmit

P1, P2,

P1 = C1
d mod n

P2 = C2
d mod n

Ciphertext C

C1 = P1
e mod n

C2 = P2
e mod n

Recovered

decimal text

d = e–1 mod f(n)

f(n) = (p – 1)(q – 1)

n = pq

n = pq

Random number

generator

e, p, q

Private key

d, n

Public key

e, n

How_are_you?

33 14 22 62 00 17 04 62 24 14 20 66

Sender

Receiver

Transmit

P
1
 = 3314 P

2
 = 2262 P

3
 = 0017

P
4
 = 0462 P

5
 = 2414 P

6
 = 2066

C
1
 = 331411 mod 11023 = 10260

C
2
 = 226211 mod 11023 = 9489

C
3
 = 1711 mod 11023 = 1782

C
4
 = 46211 mod 11023 = 727

C
5
 = 241411 mod 11023 = 10032

C
6
 = 206611 mod 11023 = 2253

P
1
 = 102605891 mod 11023 = 3314

P
2
 = 94895891 mod 11023 = 2262

P
3
 = 17825891 mod 11023 = 0017

P
4
 = 7275891 mod 11023 = 0462

P
5
 = 100325891 mod 11023 = 2414

P
6
 = 22535891 mod 11023 = 2066

11023 = 73   151

5891 = 11–1 mod 10800

10800 = (73 – 1)(151 – 1)

11023 = 73   51

Random number

generator

e = 11

 n = 11023

d = 5891

 n = 11023

e = 11

 p = 73, q = 151

1

2

6

3

4

5

7

1

2

6

3

4

5

7

Figure 9.7

RSA Processing 

of Multiple Blocks



© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Plaintext P

Decimal string

Sender

Figure 9.7  RSA Processing of Multiple Blocks

Receiver

(a) General approach (b) Example

Blocks of numbers

Transmit

P1, P2,

P1 = C1
d mod n

P2 = C2
d mod n

Ciphertext C

C1 = P1
e mod n

C2 = P2
e mod n

Recovered

decimal text

d = e–1 mod f(n)

f(n) = (p – 1)(q – 1)

n = pq

n = pq

Random number

generator

e, p, q

Private key

d, n

Public key

e, n

How_are_you?

33 14 22 62 00 17 04 62 24 14 20 66

Sender

Receiver

Transmit

P
1
 = 3314 P

2
 = 2262 P

3
 = 0017

P
4
 = 0462 P

5
 = 2414 P

6
 = 2066

C
1
 = 331411 mod 11023 = 10260

C
2
 = 226211 mod 11023 = 9489

C
3
 = 1711 mod 11023 = 1782

C
4
 = 46211 mod 11023 = 727

C
5
 = 241411 mod 11023 = 10032

C
6
 = 206611 mod 11023 = 2253

P
1
 = 102605891 mod 11023 = 3314

P
2
 = 94895891 mod 11023 = 2262

P
3
 = 17825891 mod 11023 = 0017

P
4
 = 7275891 mod 11023 = 0462

P
5
 = 100325891 mod 11023 = 2414

P
6
 = 22535891 mod 11023 = 2066

11023 = 73   151

5891 = 11–1 mod 10800

10800 = (73 – 1)(151 – 1)

11023 = 73   51

Random number

generator

e = 11

 n = 11023

d = 5891

 n = 11023

e = 11

 p = 73, q = 151

1

2

6

3

4

5

7

1

2

6

3

4

5

7

Figure 9.7

RSA Processing 

of Multiple 

Blocks



The Security of RSA

Five 
possible 

approaches 
to 

attacking 
RSA are:

Brute force

• Involves 
trying all 
possible 
private keys

Mathematical attacks 

• There are several 
approaches, all 
equivalent in effort to 
factoring the product 
of two primes

Timing attacks

• These depend on the 
running time of the 
decryption 
algorithm

Hardware fault-based 
attack

• This involves inducing 
hardware faults in the 
processor that is 
generating digital 
signatures

Chosen ciphertext     
attacks

• This type of attack 
exploits properties 
of the RSA 
algorithm

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Factoring Problem

• We can identify three approaches to attacking 
RSA mathematically:

• Factor n into its two prime factors. This enables 
calculation of ø(n) = (p – 1) x (q – 1), which in 
turn enables determination of d = e-1 (mod ø(n))

• Determine ø(n) directly without first 
determining p and q. Again this enables 
determination of d = e-1 (mod ø(n))

• Determine d directly without first determining 
ø(n)

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Timing Attacks

• Paul Kocher, a cryptographic consultant, 
demonstrated that a snooper can determine a 
private key by keeping track of how long a 
computer takes to decipher messages

• Are applicable not just to RSA but to other 
public-key cryptography systems

• Are alarming for two reasons:
• It comes from a completely unexpected 

direction

• It is a ciphertext-only attack

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Countermeasures

Constant 
exponentiation time

•Ensure that all 
exponentiations take the 
same amount of time 
before returning a result; 
this is a simple fix but does 
degrade performance

Random delay

•Better performance could 
be achieved by adding a 
random delay to the 
exponentiation algorithm 
to confuse the timing 
attack

Blinding

•Multiply the ciphertext by 
a random number before 
performing 
exponentiation; this 
process prevents the 
attacker from knowing 
what ciphertext bits are 
being processed inside the 
computer and therefore 
prevents the bit-by-bit 
analysis essential to the 
timing attack

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Fault-Based Attack

• An attack on a processor that is generating RSA digital 
signatures
• Induces faults in the signature computation by reducing the 

power to the processor

• The faults cause the software to produce invalid signatures 
which can then be analyzed by the attacker to recover the 
private key

• The attack algorithm involves inducing single-bit errors and 
observing the results

• While worthy of consideration, this attack does not appear 
to be a serious threat to RSA
• It requires that the attacker have physical access to the target 

machine and is able to directly control the input power to the 
processor

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Chosen Ciphertext Attack (CCA)

• The adversary chooses a number of ciphertexts and is 
then given the corresponding plaintexts, decrypted 
with the target’s private key
• Thus the adversary could select a plaintext, encrypt it 

with the target’s public key, and then be able to get the 
plaintext back by having it decrypted with the private 
key

• The adversary exploits properties of RSA and selects 
blocks of data that, when processed using the target’s 
private key, yield information needed for cryptanalysis

• To counter such attacks, RSA Security Inc. 
recommends modifying the plaintext using a 
procedure known as optimal asymmetric encryption 
padding (OAEP)

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Summary

• Present an overview 
of the basic principles 
of public-key 
cryptosystems

• Explain the two 
distinct uses of public-
key cryptosystems

• List and explain the 
requirements for a 
public-key 
cryptosystem

• Present an overview of 
the RSA algorithm

• Understand the timing 
attack

• Summarize the 
relevant issues related 
to the complexity of 
algorithms

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Extra Example of RSA Algorithm

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Perform Encryption for the plaintext  20 using the 
RSA algorithm with the values p = 5, q = 11, and e =13.

• We have prime number 𝐩 = 𝟓, 𝒒 = 𝟏𝟏 such that 𝐩 ≠ 𝒒

• Calculate 𝒏 = 𝒑 × 𝒒 = 𝟓 × 𝟏𝟏 = 𝟓𝟓

• Calculate 𝝋 𝒏 = 𝒑 − 𝟏 𝒒 − 𝟏 = 𝟓 − 𝟏 𝟏𝟏 − 𝟏 = 𝟒𝟎

• Given integer ‘𝒆 = 𝟏𝟑’ such that 𝐆𝐂𝐃 𝟒𝟎, 𝟏𝟑 = 𝟏
and               1 < 𝟏𝟑 < 𝟒𝟎



Extra Example of RSA Algorithm

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Perform Encryption for the plaintext  20 using the 
RSA algorithm with the values p = 5, q = 11, and e =13.

• Calculate ‘𝒅’ such that 𝒆 × 𝒅 ≡ 𝟏 𝐦𝐨𝐝 𝝋 𝒏
• 𝟏𝟑 × 𝒅 ≡ 𝟏 𝐦𝐨𝐝 𝟒𝟎 (use extended Euclidean 

algorithm to find 𝒅)

• 𝒅 = 37

• Public key 𝑷𝑼 = 𝒆, 𝒏 = {𝟏𝟑, 𝟓𝟓}

• Private key 𝑷𝑹 = 𝒅, 𝒏 = {𝟑𝟕, 𝟓𝟓}



Extra Example of RSA Algorithm

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Perform Encryption for the plaintext  20 using the 
RSA algorithm with the values p = 5, q = 11, and e =13.

• 𝑴 = 𝟐𝟎 < 𝟓𝟓

• 𝑪 = 𝑴𝒆 𝐦𝐨𝐝 𝒏 = 𝟐𝟎𝟏𝟑 𝐦𝐨𝐝 𝟓𝟓 = 𝟐𝟓


	Slide 1: Cryptography and Network Security
	Slide 2: Chapter 9
	Slide 3: Principles of Public-Key Cryptosystems
	Slide 4: Misconceptions Concerning  Public-Key Encryption
	Slide 5: Public-Key Cryptosystems
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Public-Key Cryptosystem:  Confidentiality
	Slide 10
	Slide 11
	Slide 12: Applications for Public-Key Cryptosystems
	Slide 13: Applications for Public-Key Cryptosystems
	Slide 14: Public-Key Requirements
	Slide 15: Public-Key Requirements
	Slide 16: Public-Key Cryptanalysis
	Slide 17: Rivest-Shamir-Adleman (RSA) Algorithm
	Slide 18: RSA Algorithm
	Slide 19: RSA Algorithm
	Slide 20: Algorithm Requirements
	Slide 21
	Slide 22: Example of RSA Algorithm
	Slide 23: Example of RSA Algorithm
	Slide 24: Example of RSA Algorithm
	Slide 25: Example of RSA Algorithm
	Slide 26: RSA Real World Example
	Slide 27: RSA Real World Example
	Slide 28
	Slide 29
	Slide 30: The Security of RSA
	Slide 31: Factoring Problem
	Slide 32: Timing Attacks
	Slide 33: Countermeasures
	Slide 34: Fault-Based Attack
	Slide 35: Chosen Ciphertext Attack (CCA)
	Slide 36: Summary
	Slide 37: Extra Example of RSA Algorithm
	Slide 38: Extra Example of RSA Algorithm
	Slide 39: Extra Example of RSA Algorithm

